
Navigation Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Navigation Toolbox™ Release Notes
© COPYRIGHT 2019–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2021a

Multigraph and Landmark Support For poseGraph and poseGraph3D . . . 1-2

poseGraph and poseGraph3D Object Functions Renamed 1-2

Multilayer Grid Maps: Sync multiple map layers and store additional
dynamic information . 1-2

Global Navigation Satellite System Simulation Calculations: Access GNSS
constellations, satellite look angles, pseudoranges, and receiver
positions . 1-2

Sky Plot Visualization: Plot and label satellite positions in a polar plot
. 1-2

Comprehensive support for tuning inertial sensor filters 1-3

Bidirectional RRT Path Planner: Plan path using the bidirectional rapidly
exploring random tree algorithm . 1-4

Generate Random Maze Maps for Planner Benchmarking 1-4

Transform Between Geodetic Coordinates and Local Cartesian
Coordinates . 1-5

RRT* Path Planner Improvements: Returns PathCosts field in the solution
information structure . 1-6

Lidar SLAM Object Update: Specify scan registration method to use while
adding scan . 1-6

optimizePoseGraph Function Update . 1-6

NMEA Parser System Object Update: Support for GSV sentences 1-6

updateOccupancy Object Function Update . 1-6

Use geodetic coordinates as inputs to gpsSensor . 1-6

insSensor provides more properties to specify its characteristics 1-6

Variable-sized input support for timescope object 1-7

iii

Contents

R2020b

Grid-Based A* Path Planning: Plan path from start to goal location using
the A* algorithm . 2-2

Trajectory Optimal Frenet Utilities: More control in generating optimal
trajectory in Frenet space . 2-2

Dynamic Capsule-Based Obstacle: Model and simulate ego bodies and
obstacles using collision primitive objects in environment 2-3

SLAM Map Builder Update on Data Import: Import lidar scans and
odometry data from MATLAB workspace . 2-3

Pose Graph Optimization Updates: Additional optimization functionality
for pose graphs . 2-3

Wheel Encoder Sensor Models: Simulate wheel encoder sensor readings
. 2-3

Wheel Encoder Odometry: Compute vehicle odometry using wheel
encoder sensor readings . 2-3

INS Sensor Model: Simulate inertial navigation and GPS readings 2-4

GNSS Sensor Model: Simulate GNSS receiver readings 2-4

Code Generation for 3-D Occupancy Map: Generate C/C++ code using
occupancyMap3D object . 2-4

State Space and State Validator for 3-D Occupancy Map 2-4

Generate Random Grid Maps for Planner Benchmarking 2-4

Adjust Inertial Sensor Fusion Performance Using Filter Tuner 2-5

GPS Device Object: Connect to GPS receiver from host computer 2-5

NMEA Parser Object: Parse data from standard NMEA sentences sent
from GNSS receivers . 2-6

Time Scope object: Bilevel measurements, triggers, and compiler support
. 2-6

New examples . 2-6

iv Contents

R2020a

New Time Scope object: Visualize signals in the time domain 3-2
Scope Tab . 3-2
Measurements Tab . 3-2
Scale Axes . 3-3

Scan Matching Using Line Features: Estimate pose and covariance based
on line features in lidar scans . 3-3

Trajectory Optimization Improvements: Specify longitudinal segments,
deviation offsets, and additional waypoint parameters 3-3

Path Metrics Improvements: Specify validatorVehicleCostmap as a state
validator . 3-4

Ray Intersections for 3-D Maps: Calculate ray intersections, import, and
export with a 3-D occupancy map . 3-4

Code Generation for Monte Carlo Localization: Generate C/C++ code
using the monteCarloLocalization object . 3-4

Code Generation for Sampling-Based Planners: Generate C/C++ code
using the plannerRRT, plannerRRTStar, and plannerHybridAStar
objects . 3-4

Code Generation for Trajectory Optimization: Generate C/C++ code using
the trajectoryOptimalFrenet object . 3-4

Access residuals and residual covariance of insfilters and ahrs10filter
. 3-4

Model inertial measurement unit using IMU Simulink block 3-4

Estimate device orientation using AHRS Simulink block 3-4

Calculate angular velocity from quaternions . 3-5

Transform position and velocity between two frames to motion quantities
in a third frame . 3-5

R2019b

Simultaneous Localization and Mapping (SLAM): Create 2-D and 3-D
occupancy maps using SLAM algorithm and lidar scan data 4-2

SLAM Map Builder App: Interactively modify loop closures and adjust
overall map using SLAM algorithm . 4-2

v

Pose Estimation: Accurately estimate vehicle poses using IMU and GPS
sensors and Monte Carlo Localization . 4-2

Customizable Sampling-Based Path Planners: Plan a path from start to
goal locations using RRT and RRT* algorithms 4-2

Path-Planning Metrics: Use metrics to check and compare the output of
path planners . 4-3

Sensor Models: Use simulated models for IMU, GPS, and range sensors
. 4-3

Trajectory and Waypoint Following Algorithms: Use built-in algorithms to
generate trajectories and control commands for robots 4-3

vi Contents

R2021a

Version: 2.0

New Features

Bug Fixes

Compatibility Considerations

1

Multigraph and Landmark Support For poseGraph and poseGraph3D
The poseGraph and poseGraph3D objects have been updated to support adding multiple edges
between nodes and adding landmark points to a pose graph. The addRelativePose function now
appends a new edge between specific nodes instead of overwriting the existing edge, which allows
one to incorporate multiple sensor readings for node pose estimation. To add point landmarks, use
the addPointLandmark function.

poseGraph and poseGraph3D Object Functions Renamed
These poseGraph and poseGraph3D object functions have been renamed to better reflect their
definitions:

Function Name in R2020b and Earlier Function Name in R2021a
edges edgeNodePairs
nodes nodeEstimates

Multilayer Grid Maps: Sync multiple map layers and store additional
dynamic information
The multiLayerMap object groups and stores multiple map layers as binaryOccupancyMap,
occupancyMap, or mapLayer objects. Once added, the map layers can be modified together using
the multiLayerMap object functions. Individual actions applied to each map are synced with the
multilayer map.

Assign and retrieve data from one or more cells in the map using the setMapData and getMapData
object functions. Additionally, mapLayer objects can store numeric N-dimensional arrays, enabling
you to store more than just occupancy values in each cell. This feature enables dynamic tracking of
obstacles and other more advanced applications for mapping.

Sync data across maps using the syncWith function. Move the map in the world frame using the
move function. Convert between grid, local, and world coordinates with other object functions.

Global Navigation Satellite System Simulation Calculations: Access
GNSS constellations, satellite look angles, pseudoranges, and receiver
positions
Four new functions related to GNSS simulation have been added:

• gnssconstellation — Satellite locations at the specified time.
• lookangles — Satellite look angles from receiver and satellite positions.
• pseudoranges — Pseudoranges between the GNSS receiver and satellites.
• receiverposition — Estimate GNSS receiver position and velocity.

Sky Plot Visualization: Plot and label satellite positions in a polar plot
The skyplot function plots the azimuth and elevation angles for satellite positions. The function
generates the plot as a SkyPlotChart Properties object.

R2021a

1-2

These are the main elements of the figure:

• Azimuth axes — Specified by the azdata input argument, azimuth angle positions are measured
clockwise from the North direction.

• Elevation axes —Specified by the eldata input argument, elevation angle positions are measured
as the angle above the horizon line.

• Labels — Specified by the labeldata input argument as a string array in which each point in the
azdata and eldata vectors represented by an element.

• Groups — Specified by the GroupData property, groups are a categorical array in which each
satellite position represented by an element.

Comprehensive support for tuning inertial sensor filters
You can tune the parameters of these inertial sensor filter objects using their tune object function:

• insfilterNonholonomic
• ahrs10filter
• insfilterMARG
• insfilterErrorState

In the previous release, the other three inertial sensor filters (imufilter, ahrsfilter, and
insfilterAsync) already supported the tune function.

1-3

The tunerconfig object, which is used to configure the tuning process, has three new properties:

• Filter — Class name of the fusion filter
• FunctionTolerance — Minimum change in cost to continue tuning
• OutputFcn — Output function to show tuning results. For example, you can use the

tunerPlotPose function to visualize the truth data and state estimates after tuning.

Bidirectional RRT Path Planner: Plan path using the bidirectional
rapidly exploring random tree algorithm
The plannerBiRRT object plans an obstacle-free path from a start state to a goal state using the
bidirectional RRT algorithm.

Generate Random Maze Maps for Planner Benchmarking
The mapMaze function generates a random maze map.

R2021a

1-4

Transform Between Geodetic Coordinates and Local Cartesian
Coordinates
Use these functions to transform between geodetic coordinates and local North-East-Down (NED) or
East-North-Up (ENU) coordinates.

• enu2lla — Transform local ENU coordinates to geodetic coordinates.
• ned2lla — Transform local NED coordinates to geodetic coordinates.
• lla2enu — Transform geodetic coordinates to local ENU coordinates.
• lla2ned — Transform geodetic coordinates to local NED coordinates.

1-5

RRT* Path Planner Improvements: Returns PathCosts field in the
solution information structure
The plan function of the plannerRRTStar object now returns the PathCosts field in the solution
information structure.

Lidar SLAM Object Update: Specify scan registration method to use
while adding scan
You can now specify which scan registration method to use when adding a scan to a lidarSLAM
object by using the ScanRegistrationMethod property.

The lidarSLAM object now supports the branchAndBound (default) and phaseCorrelation scan
registration algorithms. Using the phaseCorrelation algorithm requires an Image Processing
Toolbox™ license.

optimizePoseGraph Function Update
The optimizePoseGraph function now accepts a pose graph representation specified as a digraph
object whose edges are described by affine3d or rigid3d objects.

NMEA Parser System Object Update: Support for GSV sentences
You can now use the nmeaParser System object to extract National Marine Electronics Association
(NMEA) data from GNSS Satellites in View (GSV) sentences that are compliant with the NMEA 0183®

specification.

updateOccupancy Object Function Update
The updateOccupancy object function now accepts occupancy values as a matrix. The size of the
matrix must be equal to the GridSize property of the occupancyMap object.

Use geodetic coordinates as inputs to gpsSensor
You can use geodetic coordinates as inputs to a gpsSensor System object™. To enable this option,
specify the PositionInputFormat property of the gpsSensor object as 'Geodetic'.

insSensor provides more properties to specify its characteristics
The insSensor System object provides six new properties to model an inertial navigation system
sensor:

• MountingLocation — Location of sensor on platform
• AccelerationAccuracy — Standard deviation of acceleration noise
• AngularVelocityAccuracy — Standard deviation of angular velocity noise
• TimeInput — Enable or disable input of simulation time
• HasGNSSFix — Enable or disable GNSS fix

R2021a

1-6

• PositionErrorFactor — Drift rate of position without GNSS fix

Variable-sized input support for timescope object
The timescope object allows you to visualize scalar or variable-sized input signals. If the signal is
variable sized, the number of channels (columns) cannot change.

1-7

R2020b

Version: 1.2

New Features

Bug Fixes

2

Grid-Based A* Path Planning: Plan path from start to goal location
using the A* algorithm
Plan a path on a 2-D grid map using the plannerAStarGrid object.

Trajectory Optimal Frenet Utilities: More control in generating optimal
trajectory in Frenet space
The referencePathFrenet object fits a smooth, piecewise continuous curve to the provided
waypoints. Use the object functions to convert trajectories between global and Frenet coordinate
systems, interpolate states along the path based on arc length, and query the closest point on the
path from a global state.

The trajectoryGeneratorFrenet object generates trajectories between the initial and terminal
states using fourth or fifth order polynomials. The trajectories are relative to a
referencePathFrenet object. The connect function connects initial states to terminal states over
a span of time.

R2020b

2-2

https://www.mathworks.com/help/releases/R2020b/nav/ref/plannerastargrid.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/referencepathfrenet.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/trajectorygeneratorfrenet.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/referencepathfrenet.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/trajectorygeneratorfrenet.connect.html

For more details, see the Highway Trajectory Planning Using Frenet Reference Path example.

Dynamic Capsule-Based Obstacle: Model and simulate ego bodies and
obstacles using collision primitive objects in environment
The dynamicCapsuleList and dynamicCapsuleList3D objects manage two lists of collision
primitive objects: ego bodies and obstacles. Use the object functions to dynamically add, remove, and
update the geometry and future poses of ego bodies and obstacles in the environment. To validate
stored trajectories, use the checkCollision function, which checks the collisions between ego
bodies and obstacles at each time step.

For more details, see the Highway Trajectory Planning Using Frenet Reference Path example.

SLAM Map Builder Update on Data Import: Import lidar scans and
odometry data from MATLAB workspace
The SLAM Map Builder app now allows you to import lidar scans and odometry data from the
MATLAB® workspace. To import data from the workspace, select Import > Import from
workspace. Workspace import does not require a ROS Toolbox license.

Pose Graph Optimization Updates: Additional optimization
functionality for pose graphs
The poseGraph and poseGraph3D objects now support the edgeResidualErrors function. This
function computes edge residual errors for each edge in the pose graph given the current pose node
estimates.

The trimLoopClosures function optimizes pose graphs by removing bad loop closure edges that
would otherwise cause edge residual errors.

The poseGraphSolverOptions function creates solver options for pose graph optimization.

Wheel Encoder Sensor Models: Simulate wheel encoder sensor
readings
Use provided sensor models to simulate wheel encoder sensor readings for various types of vehicles.
Wheel encoder sensor models include:

• wheelEncoderAckermann object
• wheelEncoderBicycle object
• wheelEncoderDifferentialDrive object
• wheelEncoderUnicycle object

Wheel Encoder Odometry: Compute vehicle odometry using wheel
encoder sensor readings
Use provided odometry models to compute vehicle odometry of various types of vehicles using wheel
encoder sensor readings. Wheel encoder odometry models include:

2-3

https://www.mathworks.com/help/releases/R2020b/nav/ug/highway-trajectory-planning-using-frenet.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/dynamiccapsulelist.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/dynamiccapsulelist3d.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/dynamiccapsulelist.checkcollision.html
https://www.mathworks.com/help/releases/R2020b/nav/ug/highway-trajectory-planning-using-frenet.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/slammapbuilder-app.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/posegraph.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/posegraph3d.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/posegraph.edgeresidualerrors.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/trimloopclosures.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/posegraphsolveroptions.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/wheelencoderackermann-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/wheelencoderbicycle-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/wheelencoderdifferentialdrive-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/wheelencoderunicycle-system-object.html

• wheelEncoderOdometryAckermann object
• wheelEncoderOdometryBicycle object
• wheelEncoderOdometryDifferentialDrive object
• wheelEncoderOdometryUnicycle object

INS Sensor Model: Simulate inertial navigation and GPS readings
Use the insSensor object or INS block to simulate inertial navigation and GPS readings.

GNSS Sensor Model: Simulate GNSS receiver readings
Use the gnssSensor object to simulate Global Navigation Satellite System (GNSS) receiver readings.

Code Generation for 3-D Occupancy Map: Generate C/C++ code using
occupancyMap3D object
You can now generate code when using the occupancyMap3D object.

State Space and State Validator for 3-D Occupancy Map
Use the stateSpaceSE3 object to store parameters and states in the 3-D state-space representation.

Use the validatorOccupancyMap3D object to validate SE3 states in a 3-D occupancy map.

Generate Random Grid Maps for Planner Benchmarking
Use the mapClutter function to generate a map with randomly scattered obstacles.

R2020b

2-4

https://www.mathworks.com/help/releases/R2020b/nav/ref/wheelencoderodometryackermann-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/wheelencoderodometrybicycle-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/wheelencoderodometrydifferentialdrive-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/wheelencoderodometryunicycle-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/inssensor-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/ins.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/gnsssensor-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/occupancymap3d.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/statespacese3.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/validatoroccupancymap3d.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/mapclutter.html

Adjust Inertial Sensor Fusion Performance Using Filter Tuner
Use the tune function and the tunerconfig object to adjust the properties of the imufilter,
ahrsfilter, and insfilterAsync objects. Adjusting these properties can impact performance.

For more details, see the Automatic Tuning of the insfilterAsync Filter example.

GPS Device Object: Connect to GPS receiver from host computer
Use the gpsdev object to a create connection to a GPS receiver connected to the host computer
running Navigation Toolbox™. You can create the object either by specifying the serial port as an
input argument or by using the serialport object from MATLAB.

After you create the gpsdev object, use these functions to perform further actions:

2-5

https://www.mathworks.com/help/releases/R2020b/nav/ref/insfilterasync.tune.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/tunerconfig.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/imufilter-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/ahrsfilter-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/insfilterasync.html
https://www.mathworks.com/help/releases/R2020b/nav/ug/automatic-tuning-of-the-insfilterAsync-filter.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/gpsdev-system-object.html

• read — Obtain GPS data like latitude, longitude and altitude (LLA), ground speed, course, dilution
of precisions, and GPS receiver time, along with timestamp and overrun information.

• flush — Clear the software buffers and serial port buffers.
• writeBytes — Write raw data to configure the GPS receiver.

NMEA Parser Object: Parse data from standard NMEA sentences sent
from GNSS receivers
Use the nmeaParser object to parse data from some of the standard NMEA (National Marine
Electronics Association) sentences that are compliant with the NMEA 0183® specification.

The nmeaParser object parses data sent from GNSS receivers and identified by these NMEA
message types: RMC, GGA, GSA, VTG, GLL, GST, ZDA, and HDT. The object outputs an array of
structures corresponding to the data extracted from the requested NMEA message types.

Time Scope object: Bilevel measurements, triggers, and compiler
support
The timescope object now includes support for:

• Bilevel measurements – Measure transitions, overshoots, undershoots, and cycles.
• Triggers – Set triggers to sync repeating signals and pause the display when events occur.
• MATLAB Compiler™ support – Use the mcc function to compile code for deployment.

New examples
This release contains several new examples:

• Wheel Encoder Error Sources
• Highway Trajectory Planning Using Frenet Reference Path
• GNSS Simulation Overview
• Automatic Tuning of the insfilterAsync Filter

R2020b

2-6

https://www.mathworks.com/help/releases/R2020b/nav/ref/gpsdev.read.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/gpsdev.flush.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/gpsdev.writebytes.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/nmeaparser-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/timescope.html
https://www.mathworks.com/help/releases/R2020b/nav/ug/wheel-encoder-error-sources.html
https://www.mathworks.com/help/releases/R2020b/nav/ug/highway-trajectory-planning-using-frenet.html
https://www.mathworks.com/help/releases/R2020b/nav/ug/gnss-simulation-overview.html
https://www.mathworks.com/help/releases/R2020b/nav/ug/automatic-tuning-of-the-insfilterAsync-filter.html

R2020a

Version: 1.1

New Features

Bug Fixes

3

New Time Scope object: Visualize signals in the time domain
Use the timescope object to visualize real- and complex-valued floating-point and fixed-point signals
in the time domain.

The Time Scope window has two toolstrip tabs:

Scope Tab

In the Scope tab, you can control the layout and configuration settings, and set the display settings of
the Time Scope. You can also generate script to recreate your Time Scope with the same settings.
When doing so, an editor window opens with the code required to recreate your timescope object.

Measurements Tab

In the Measurements tab, all measurements are made for a specified channel.

• Data Cursors –– Display the screen cursors.
• Signal Statistics –– Display the various statistics of the selected signal, such as maximum/

minimum values, peak-to-peak values, mean, median, RMS.
• Peak Finder –– Display peak values for the selected signal.

R2020a

3-2

https://www.mathworks.com/help/releases/R2020a/nav/ref/timescope.html

Scale Axes

You can use the mouse to pan around the axes, and use the scroll button on your mouse to zoom in
and out of the plot.

You can also use the buttons that appear when you hover over the plot window.

•
 — Maximize the axes, hiding all labels and insetting the axes values.

•
 — Zoom in on the plot.

•
 — Pan around the axes.

•
 — Autoscale the axes to fit the shown data.

For more details, see Configure Time Scope MATLAB Object.

Scan Matching Using Line Features: Estimate pose and covariance
based on line features in lidar scans
The matchScansLine function calculates a relative pose and estimated covariance between lidar
scan readings based on estimated linear features.

Trajectory Optimization Improvements: Specify longitudinal segments,
deviation offsets, and additional waypoint parameters
The trajectoryOptimalFrenet contains two new properties: NumSegments and
DeviationOffset. Increasing NumSegments divides the longitudinal terminal states into multiple
segments to calculate more dynamic trajectories, but increases computational complexity.
DeviationOffset specifies an offset on the cost calculation for trajectories to bias the optimal
trajectory in a specific direction that deviated from the reference path.

You can also calculate trajectories based on a velocity-keeping behavior by specifying NaN for the
Longitudal field of the TerminalStates property.

The plan function no longer errors when a feasible trajectory is not found. The function now returns
an empty trajectory vector and an exit flag is included in the output arguments.

3-3

https://www.mathworks.com/help/releases/R2020a/nav/ug/configure-time-scope-matlab-object.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/matchscansline.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/trajectoryoptimalfrenet.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/plannerrrt.plan.html

Path Metrics Improvements: Specify validatorVehicleCostmap as a
state validator
The pathmetrics function now supports the validatorVehicleCostmap as the state validator
input to the function.

Ray Intersections for 3-D Maps: Calculate ray intersections, import,
and export with a 3-D occupancy map
The occupancyMap3D object now supports the rayIntersection function for calculating the
intersection of rays with obstacles in the environment. You can also import and export occupancy
maps as a .bt or .ot octomap file.

Code Generation for Monte Carlo Localization: Generate C/C++ code
using the monteCarloLocalization object
You can now generate code when using the monteCarloLocalization object.

Code Generation for Sampling-Based Planners: Generate C/C++ code
using the plannerRRT, plannerRRTStar, and plannerHybridAStar
objects
You can now generate code when using the plannerRRT, plannerRRTStar, and
plannerHybridAStar objects.

Code Generation for Trajectory Optimization: Generate C/C++ code
using the trajectoryOptimalFrenet object
You can now generate code when using the trajectoryOptimalFrenet object.

Access residuals and residual covariance of insfilters and ahrs10filter
You can access the residuals and residual covariance information of insfilters (insfilterMARG,
insfilterAsync, insfilterErrorState, and insfilterNonholonomic) and ahrs10filter
through their object functions such as fusegps, fusegyro, residual, and residualgps.

Model inertial measurement unit using IMU Simulink block
Use the IMU Simulink block to model an inertial measurement unit (IMU) composed of
accelerometer, gyroscope, and magnetometer sensors.

Estimate device orientation using AHRS Simulink block
Use the AHRS Simulink block to estimate the orientation of a device from its accelerometer,
magnetometer, and gyroscope sensor readings.

R2020a

3-4

https://www.mathworks.com/help/releases/R2020a/nav/ref/pathmetrics.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/validatorvehiclecostmap.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/occupancymap3d.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/occupancymap3d.rayintersection.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/montecarlolocalization-system-object.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/plannerrrt.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/plannerrrtstar.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/plannerhybridastar.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/trajectoryoptimalfrenet.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/insfiltermarg.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/insfilterasync.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/insfiltererrorstate.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/insfilternonholonomic.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/ahrs10filter.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/errorstateimugpsfuser.fusegps.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/asyncmarggpsfuser.fusegyro.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/insfiltermarg.residual.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/insfiltermarg.residualgps.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/imu.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/ahrs.html

Calculate angular velocity from quaternions
Use angvel to calculate angular velocity from an array of quaternions.

Transform position and velocity between two frames to motion
quantities in a third frame
Use transformMotion to transform position and velocity between two coordinate frames to motion
quantities in a third coordinate frame.

3-5

https://www.mathworks.com/help/releases/R2020a/nav/ref/quaternion.angvel.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/transformmotion.transformmotion.html

R2019b

Version: 1.0

New Features

4

Simultaneous Localization and Mapping (SLAM): Create 2-D and 3-D
occupancy maps using SLAM algorithm and lidar scan data
Use the SLAM algorithm to tune parameters for scan matching and loop-closure detection. The
lidarSLAM object takes lidar scan data and builds a map as your vehicle moves through it. The
algorithm generates a poseGraph and continuously optimizes edge-constraints based on detected
loop closures. As more loop closures are detected, you can continuously build a map of your
environment and adjust for odometry drift.

For an example using 2-D lidar scans, see Implement Online Simultaneous Localization And Mapping
(SLAM) with Lidar Scans.

For an example using 3-D lidar point clouds, see Perform SLAM Using 3-D Lidar Point Clouds.

For more information, see SLAM.

SLAM Map Builder App: Interactively modify loop closures and adjust
overall map using SLAM algorithm
Use the SLAM Map Builder app to load and filter lidar scans and estimated poses from a log file or
data in the workspace. Tune and run the SLAM algorithm to automatically build the map. Pause at
any time to modify relative poses between scans. Modify or delete loop closures from the pose graph
to improve the overall map. After you are done with the entire data set, output the map as an
occupancy grid to use with path planning or other navigation algorithms.

Pose Estimation: Accurately estimate vehicle poses using IMU and
GPS sensors and Monte Carlo Localization
Use localization and pose estimation algorithms to orient your vehicle in your environment. Sensor
pose estimation uses filters to improve and combine sensor readings for IMU, GPS, and other sensors.
Localization algorithms, like Monte Carlo localization and scan matching, estimate your pose in a
known map using range sensor or lidar readings. Pose graphs track your estimated poses and can be
optimized based on edge constraints and loop closures.

For more information, see Localization and Pose Estimation

Customizable Sampling-Based Path Planners: Plan a path from start to
goal locations using RRT and RRT* algorithms
Plan paths through a 2-D environment using provided path planning algorithms:

• plannerRRT
• plannerRRTStar
• plannerHybridAStar

Specify parameters for provided 2-D state-space representations:

• stateSpaceSE2
• stateSpaceDubins

R2019b

4-2

https://www.mathworks.com/help/releases/R2019b/nav/ref/lidarslam.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/posegraph.html
https://www.mathworks.com/help/releases/R2019b/nav/ug/implement-online-simultaneous-localization-and-mapping-with-lidar-scans.html
https://www.mathworks.com/help/releases/R2019b/nav/ug/implement-online-simultaneous-localization-and-mapping-with-lidar-scans.html
https://www.mathworks.com/help/releases/R2019b/nav/ug/perform-lidar-slam-using-3d-lidar-point-clouds.html
https://www.mathworks.com/help/releases/R2019b/nav/test_nav_category_mw_cb483bf7-0321-4a84-8f5c-511855ff92b6.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/slammapbuilder-app.html
https://www.mathworks.com/help/releases/R2019b/nav/test_nav_category_mw_e82dc002-5ba2-4aca-a4ba-d3e4ae2d0cc4.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/plannerrrt.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/plannerrrtstar.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/plannerhybridastar.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/statespacese2.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/statespacedubins.html

• stateSpaceReedsShepp

Validate your planned paths using occupancy maps or vehicle cost maps:

• validatorOccupancyMap
• validatorVehicleCostmap

Write your own custom state space or state validator using class interfaces:

• nav.StateSpace
• nav.StateValidator

Path-Planning Metrics: Use metrics to check and compare the output
of path planners
Calculate path metrics to evaluate planned paths using the pathmetrics object. Check the
clearance and smoothness based on your path constraints.

Sensor Models: Use simulated models for IMU, GPS, and range
sensors
Perform sensor modeling and simulation for accelerometers, magnetometers, gyroscopes, altimeters,
GPS, IMU, and range sensors. Analyze sensor readings, sensor noise, environmental conditions, and
other configuration parameters. Generate trajectories to emulate these sensors traveling through a
world, and calibrate the performance of your sensors.

Sensor models include:

• gpsSensor
• imuSensor
• rangeSensor

For other sensors and more information, see Sensor Models.

Trajectory and Waypoint Following Algorithms: Use built-in algorithms
to generate trajectories and control commands for robots
Use the waypointTrajectory and kinematicTrajectory objects to generate trajectories for
sensors or vehicles and control commands to send to your vehicle

4-3

https://www.mathworks.com/help/releases/R2019b/nav/ref/statespacereedsshepp.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/validatoroccupancymap.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/validatorvehiclecostmap.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/nav.statespace-class.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/nav.statevalidator-class.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/pathmetrics.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/pathmetrics.clearance.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/pathmetrics.smoothness.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/gpssensor-system-object.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/imusensor-system-object.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/rangesensor-system-object.html
https://www.mathworks.com/help/releases/R2019b/nav/test_nav_category_mw_df757348-5e5a-48a6-ac03-ec59402deea4.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/waypointtrajectory-system-object.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/kinematictrajectory-system-object.html

	R2021a
	Multigraph and Landmark Support For poseGraph and poseGraph3D
	poseGraph and poseGraph3D Object Functions Renamed
	Multilayer Grid Maps: Sync multiple map layers and store additional dynamic information
	Global Navigation Satellite System Simulation Calculations: Access GNSS constellations, satellite look angles, pseudoranges, and receiver positions
	Sky Plot Visualization: Plot and label satellite positions in a polar plot
	Comprehensive support for tuning inertial sensor filters
	Bidirectional RRT Path Planner: Plan path using the bidirectional rapidly exploring random tree algorithm
	Generate Random Maze Maps for Planner Benchmarking
	Transform Between Geodetic Coordinates and Local Cartesian Coordinates
	RRT* Path Planner Improvements: Returns PathCosts field in the solution information structure
	Lidar SLAM Object Update: Specify scan registration method to use while adding scan
	optimizePoseGraph Function Update
	NMEA Parser System Object Update: Support for GSV sentences
	updateOccupancy Object Function Update
	Use geodetic coordinates as inputs to gpsSensor
	insSensor provides more properties to specify its characteristics
	Variable-sized input support for timescope object

	R2020b
	Grid-Based A* Path Planning: Plan path from start to goal location using the A* algorithm
	Trajectory Optimal Frenet Utilities: More control in generating optimal trajectory in Frenet space
	Dynamic Capsule-Based Obstacle: Model and simulate ego bodies and obstacles using collision primitive objects in environment
	SLAM Map Builder Update on Data Import: Import lidar scans and odometry data from MATLAB workspace
	Pose Graph Optimization Updates: Additional optimization functionality for pose graphs
	Wheel Encoder Sensor Models: Simulate wheel encoder sensor readings
	Wheel Encoder Odometry: Compute vehicle odometry using wheel encoder sensor readings
	INS Sensor Model: Simulate inertial navigation and GPS readings
	GNSS Sensor Model: Simulate GNSS receiver readings
	Code Generation for 3-D Occupancy Map: Generate C/C++ code using occupancyMap3D object
	State Space and State Validator for 3-D Occupancy Map
	Generate Random Grid Maps for Planner Benchmarking
	Adjust Inertial Sensor Fusion Performance Using Filter Tuner
	GPS Device Object: Connect to GPS receiver from host computer
	NMEA Parser Object: Parse data from standard NMEA sentences sent from GNSS receivers
	Time Scope object: Bilevel measurements, triggers, and compiler support
	New examples

	R2020a
	New Time Scope object: Visualize signals in the time domain
	Scope Tab
	Measurements Tab
	Scale Axes

	Scan Matching Using Line Features: Estimate pose and covariance based on line features in lidar scans
	Trajectory Optimization Improvements: Specify longitudinal segments, deviation offsets, and additional waypoint parameters
	Path Metrics Improvements: Specify validatorVehicleCostmap as a state validator
	Ray Intersections for 3-D Maps: Calculate ray intersections, import, and export with a 3-D occupancy map
	Code Generation for Monte Carlo Localization: Generate C/C++ code using the monteCarloLocalization object
	Code Generation for Sampling-Based Planners: Generate C/C++ code using the plannerRRT, plannerRRTStar, and plannerHybridAStar objects
	Code Generation for Trajectory Optimization: Generate C/C++ code using the trajectoryOptimalFrenet object
	Access residuals and residual covariance of insfilters and ahrs10filter
	Model inertial measurement unit using IMU Simulink block
	Estimate device orientation using AHRS Simulink block
	Calculate angular velocity from quaternions
	Transform position and velocity between two frames to motion quantities in a third frame

	R2019b
	Simultaneous Localization and Mapping (SLAM): Create 2-D and 3-D occupancy maps using SLAM algorithm and lidar scan data
	SLAM Map Builder App: Interactively modify loop closures and adjust overall map using SLAM algorithm
	Pose Estimation: Accurately estimate vehicle poses using IMU and GPS sensors and Monte Carlo Localization
	Customizable Sampling-Based Path Planners: Plan a path from start to goal locations using RRT and RRT* algorithms
	Path-Planning Metrics: Use metrics to check and compare the output of path planners
	Sensor Models: Use simulated models for IMU, GPS, and range sensors
	Trajectory and Waypoint Following Algorithms: Use built-in algorithms to generate trajectories and control commands for robots

